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Abstract 13 
 14 
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus of the genus Nairovirus within 15 
the family Bunyaviridae. Infection can result in general myalgia, fever, and headache with some patients 16 
developing hemorrhagic fever with mortality rates ranging from 5-30%. CCHFV has a wide geographic 17 
range that includes Africa, Asia, the Middle East, and Europe with nucleotide sequence variation 18 
approaching 20% across the three negative-sense RNA genome segments. While phylogenetic clustering 19 
generally aligns with geographic origin of individual isolates, distribution can be wide due to 20 
tick/CCHFV dispersion via migrating birds. This sequence diversity negatively impacts existing 21 
molecular diagnostic assays, leading to false negative diagnostic results. Here, we updated our previously 22 
developed CCHFV real-time RT-PCR assay to include CCHFV strains not detected using that original 23 
assay.  Deep sequencing of eight different CCHFV strains, including three that were not detectable using 24 
the original assay, identified sequence variants within this assay target region. New primers and probe 25 
based on the sequencing results and newly deposited sequences in GenBank greatly improved assay 26 
sensitivity and inclusivity. Subsequent comparison of this assay to another commonly used CCHFV real-27 
time RT-PCR assay targeting a different region of the viral genome showed improved detection, and both 28 
assays could be used to mitigate CCHFV diversity with diagnostics. Overall, this work demonstrated the 29 
importance of viral sequencing efforts for robust diagnostic assay development with specific 30 
improvement in our currently fielded CCHFV assay.  31 
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Introduction 32 

Crimean-Congo hemorrhagic fever virus (CCHFV; family Bunyaviridae, genus Nairovirus)  33 
infection of humans can result in a disease spectrum ranging from a nonspecific febrile illness to 34 
hemorrhagic fever manifestations with a mortality rate of 5-30% [1].  The relatively low rate of disease in 35 
seropositive populations has spurred research into potential host susceptibility factors [2-5], although the 36 
availability of appropriate supportive care may provide a more direct correlation with clinical outcomes. 37 
CCHFV is predominantly transmitted by ixodid ticks of the genus Hyalomma, and CCHFV has a wide 38 
geographic distribution with endemic foci in eastern Europe, sub-Saharan and southern Africa, the Middle 39 
East, and Asia [6, 7]. Handling of tick-infested livestock and proximity to vegetated areas with high tick 40 
burdens are significant risk factors for CCHFV infection. In addition, nosocomial exposure to CCHFV-41 
infected individuals in low resource facilities can result in severe disease among healthcare workers [1, 42 
7]. 43 

CCHFV is an enveloped virus with a trisegmented, negative-sense RNA genome that encodes an RNA-44 
dependent RNA polymerase (L), two major structural glycoproteins (GN and GC), and a nucleoprotein (N) 45 
on the L, M, and S genome segments, respectively. CCHFV has the largest genome of any bunyavirus at 46 
19.1 kb total with 12.1, 5.4, and 1.6 kb in the three genome segments, respectively. To date, the NIAID 47 
Virus Pathogen Database and Analysis Resource (ViPR) lists complete genome sequences available for 48 
54 (L), 75 (M), and 102 (S) genome segments of CCHFV isolates [8]. Pairwise alignments of these 49 
sequences indicate that their mean sequence identities are 89.4 % (L), 80.0 % (M), and 88.1 % (S).  50 

Currently, there are no CCHFV vaccines or therapeutics approved for human use by the United States 51 
Food and Drug Administration, although immunoglobulin therapy and ribavirin have been used abroad 52 
with mixed results [14]. In the absence of approved countermeasures, effective diagnostics remain an 53 
invaluable means to identify and control CCHFV outbreaks. A variety of assay platforms for CCHFV can 54 
detect viral nucleic acids to include low density macroarrays [15], high density resequencing arrays [16], 55 
padlock probes with colorimetric readout [17], LAMP [18], and polymerase chain reaction [19-23]. Real-56 
time reverse-transcription PCR remains the gold standard for quantitative, sensitive, and specific 57 
detection of CCHFV; however, these assays have sensitivity issues due to the genetic diversity of 58 
different CCHFV strains [24]. 59 

Previously, Garrison et al developed a TaqMan MGB real-time RT-PCR assay capable of detecting 60 
eighteen strains of CCHFV [25]. In subsequent testing of this assay identified several additional strains 61 
which were undetectable by this assay [20]. We suspected the inherent diversity of CCHFV genome 62 
contributed to inefficient primer/probe hybridization. To improve the assay performance, we sequenced 63 
these strains and designed a set of degenerate primers and probes to take into account CCHFV diversity in 64 
the assay target region. This optimization increased assay sensitivity compared to the original Garrison et 65 
al. assay and to a commonly used assay developed by Atkinson et al [20, 26-31].  66 

Materials and Methods  67 
 68 
Viruses. Multiple CCHFV strains including IbAr10200 (UCC# R4401), DAK8194 (UCC# R4416), SPU 69 
128/81 (UCC# R4417), SPU 115/87 (UCC# R4448), UG 3010 (UCC# R4432), JD-206 (UCC# R4413), 70 
HY-13 (UCC# R4459), and Drosdov (UCC# R4405) were acquired from the Unified Culture Collection 71 
(UCC) maintained at US Army Medical Research Institute of Infectious Diseases (USAMRIID). Total 72 
RNA was extracted from 200 μl of cell culture supernatant using TRIzol LS (Thermo Fisher Scientific, 73 
Waltham, MA), the EZ1 Advanced XL (Qiagen, Valencia, CA), and the EZ1 Virus Mini Kit V 2.0 74 
(Qiagen) according the manufacturers’ recommendations. Total nucleic acid was eluted in 90 μl elution 75 
buffer and stored at -80 °C until use. Previously extracted RNA from additional CCHFV strains 76 
maintained at the USAMRIID including I-40, 2219 KKK28, I-248, SPU 97/85, SPU 134/ 87, SPU 77 
415/85, and SPU 41/84 were used for assay inclusivity testing. 78 
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 79 
S segment sequencing and analysis. The S segment of each CCHFV isolate was amplified from 15 μl of 80 
total nucleic acid eluate using previously described primers [32] that were modified for Nextera-based 81 
Illumina sequencing. The sequencing and assembly of these segments were previously described 82 
(reference Genome Announcement). Briefly, the S segment of each virus was amplified using the 83 
SuperScript III One-Step RT-PCR system with Platinum Taq DNA Polymerase High Fidelity (Thermo 84 
Fisher Scientific) and gel-purified [QIAquick Gel Extraction Kit (Qiagen)]. Next-generation sequencing 85 
libraries were generated using the Nextera XT DNA Library Kit (Illumina) according to the 86 
manufacturer’s instructions. Libraries were pooled and sequenced on the MiSeq Desktop Sequencer 87 
(Illumina). Consensus sequences were generated using CLC Genomics Workbench (Qiagen). The SRA 88 
files were deposited into Bioproject PRJNA360092, and the consensus sequences were deposited into 89 
GenBank [IbAr10200 (KY484036), DAK8194 (KY484027), SPU 128/81 (KY484044), SPU 115/87 90 
(KY484040), UG3010 (KY484048), JD-206 (KY484037), HY-13 (KY484031), and Drosdov 91 
(KY484028)]. 92 
 93 
The S segments from these newly sequenced viruses were aligned, and the assay target region was 94 
isolated for variant analysis and assay redesign. Additionally, existing CCHFV S segment sequences from 95 
GenBank that covered the assay target region were aligned with CLC Genomics Workbench 96 
(Supplementary Figure 1).  97 
 98 
Real-time RT-PCR assays. The existing CCHFV-S assay [25] was run as previously described with 99 
modifications described below. For the new assay described here (CCHFV-S2), primers and probe were 100 
designed within the same assay target region based on the data from the newly sequenced CCHFV 101 
isolates (see Table 1 for the primer and probe sequences and concentrations). Both assays (CCHFV-S and 102 
CCHFV-S2) were run on a Roche LightCycler 480 (Roche Applied Science, Indianapolis, IN) using the 103 
SuperScript One-Step RT-PCR Kit (Thermo Fisher Scientific), 5 μl purified nucleic acid, and a final 104 
concentration of 3 mM MgSO4. Cycling conditions were 50 °C for 15 minutes, 95 °C for 5 min, and then 105 
45 cycles of 94 °C for 1 s, 55 °C for 20 s, and 68 °C for 5 s. For the comparison with the Atkinson assay, 106 
primers, probe, and reaction conditions were the same as previously published [20]. The fluorescence was 107 
measured at the end of each 68 °C extension step, and a positive call required a quantification cycle (Cq) 108 
value of less than 40 cycles. All negative calls were given a Cq value of 40. The modified assay (CCHF-109 
S2) was optimized for primer and probe concentrations using CCHFV IbAr10200 RNA. This process 110 
involved testing multiple primer concentrations ranging from 0.5 to 1.0 mM with 0.2 mM probe. The 111 
optimal primer concentration was selected based on the lowest Cq value and the highest endpoint 112 
fluorescence (data not shown). 113 
  114 
A preliminary limit of detection (LOD) determination was conducted for both assays by serially diluting 115 
viral RNA either ten-fold or five-fold in two different series, and samples were run by real-time RT-PCR 116 
in triplicate. The preliminary LOD was the lowest RNA dilution where all replicates were positive. The 117 
LOD was confirmed by running 60 replicates at the LOD, requiring at least 58 of 60 replicates to be 118 
positive. Exclusivity testing was conducted using a viral RNA reference panel maintained at USAMRIID 119 
and acquired from the UCC. These viruses included Rift Valley fever virus (MP12), Hantaan virus 120 
(76118), yellow fever virus (17D), dengue virus serotype 1 (WestPac, UCC# R4423), dengue virus 121 
serotype 2 (S16803, UCC# R4424), dengue virus serotype 3 (CH53489, UCC# R4425), dengue virus 122 
serotype 4 (341750, UCC# R4426), West Nile virus [EG101 (UCC# R4310T)  and NY99 (UCC# 123 
R4272T)], Chikungunya virus [B8636 and 38635), Lassa fever virus Josiah (UCC# R4086T), and Ebola 124 
virus variant Mayinga (UCC# R3828S). Inclusivity for both assays was determined using the 15 different 125 
strains of CCHFV maintained at USAMRIID and the UCC described above. 126 
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 127 
Statistics. Statistical analyses were performed using GraphPrism 6 (GraphPad Software, San Diego, CA). 128 
Assay linearity based on the preliminary LOD was determined based on the linear range of the curve 129 
using a nonlinear regression analysis. A two-way ANOVA with Sidak’s multiple comparisons test was 130 
done to determine differences between the CCHF-S and CCHF-S-pan assay using multiple CCHFV strain 131 
RNAs. 132 
 133 
Results  134 
                    135 
CCHFV strain sequencing and analysis. Since the development of our original CCHFV-S assay [25], we 136 
(CCHF-S, Table 2) and others [20] identified decreased assay performance including nondetection of 137 
several CCHFV strains (JD-206, Drosdov, and DAK8194). To address this problem, we conducted deep 138 
sequencing of multiple CCHFV S segments, including the three nondetectable CCHFV strains (reference 139 
Genome Announcement). The S segment consensus sequences for these viruses were aligned to identify 140 
mismatches within the assay target region (Figure 1).  141 
 142 
Multiple nucleotide variants were identified in the primer and probe region for each strain sequenced 143 
(Figure 1), resulting in suboptimal primer/probe binding. Of note, a deletion in the 5’ end of the published 144 
probe sequence, along with additional 3’ probe variants for JD-206 and DAK 8194, likely resulted in 145 
nondetection of those two virus strains. Multiple variants in the reverse primer of Drosdov likely 146 
contributed to that strain’s nondetection.  147 
 148 
Assay evaluation. New primers and probe (assay CCHF-S2, Table 1) were redesigned to incorporate as 149 
much sequence diversity at the assay target location as possible. Comparison of the CCHFV-S2 assay 150 
primer/probe sequence to all CCHFV S segment sequences available in GenBank at the time of the assay 151 
redesign (n = 138, Supplementary Figure 1) showed the forward, reverse, and probe sequences had no 152 
greater than 1 mismatch (and an exact match within the last 2 bases of the 3’ end) for 93.5, 99.3, and 153 
98.6% of these S segment sequences, respectively.  154 
 155 
The analytical characteristics of both the CCHF-S and CCHF-S2 assays were determined using a well-156 
characterized stock of IbAr10200 (Figure 2, Table 3). The preliminary limit of detection (LOD), the 157 
highest dilution of virus where 3 of 3 replicates were all positive, was 1.28 PFU/reaction or 256 PFU/ml 158 
for the CCHF-S2 assay (Figure 2). Considering the linear segment of the dilution series, the R2 value was 159 
0.980, and the y-intercept was 43.64. This LOD was confirmed by running 60 replicates at this LOD, 160 
resulting in 58 of 60 positive replicates (Figure 2). For the CCHF-S assay using the same IbAr10200 161 
RNA (Figure 2) identified the preliminary LOD, confirmed by 59 of 60 replicates being positive, to be 162 
1.28 x 104 PFU/rxn or 2.56 x 106 PFU/ml. The assay linearity over the linear part of the dilution series 163 
was 0.845, and the y-intercept was 53.41. 164 
 165 
The CCHF-S2 assay was then compared to another commonly used assay, the Atkinson assay [20], which 166 
targets a different region within the CCHFV S segment. Using the same RNA as a template and the 167 
reaction conditions described in [20], we identified a greater assay sensitivity compared to the CCHFV-S 168 
assay but decreased sensitivity compared to the CCHF-S2 assay (Figure 2, Tables 2 and 3). The assay 169 
LOD with IbAr10200 RNA was 2.56 x 104 PFU/ml with 60/60 replicates being positive. While several 170 
nucleotide variants were identified for the Atkinson assay within the assay target region of the CCHFV 171 
isolates previously sequenced (reference Genome Announcement), incorporating sequence-optimized 172 
reverse primer and the probe into the Atkinson assay did not change assay sensitivity (data not shown). 173 
 174 
All three assays were then screened against an inclusivity panel of 15 different CCHFV isolates (Table 3). 175 
The CCHF-S2 assay and the Atkinson assay detected all of the CCHFV isolates including the three that 176 
the CCHF-S assay did not detect. Assay sensitivity, reflected in the Cq values, was generally better for the 177 
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CCHF-S2 assay (Table 3). In comparing the CCHF-S and the CCHF-S2 assays, almost all of these 178 
viruses had large improvements in the Cq values. For example, SPU 115/87 had ~10 Cq (~3 log) 179 
improvement in sensitivity, and IbAr10200 had ~15 Cq (>4 log) improvement (Table 3). Exclusivity 180 
testing for multiple viruses (see Materials and Methods) with the CCHF-S2 assay resulted in negative 181 
detection for each virus tested. 182 
 183 
Discussion 184 
 185 
Due to the low fidelity of the viral RNA-dependent RNA-polymerase, RNA viruses generally rapidly 186 
evolve under selective pressure, resulting in significant phylogenetic heterogeneity. This diversity can be 187 
problematic for diagnostic assays and therapeutics, requiring assay modification as additional sequence 188 
information becomes available. Indeed, two recently published studies investigating the genomic diversity 189 
of the Ebola virus circulating in West Africa [33, 34] identified multiple nucleotide variants among 190 
several commonly used Ebola virus real-time RT-PCR assays and therapeutics in development. These 191 
studies suggest such variants could negatively impact efficacy of diagnostic assays and therapeutics. To 192 
mitigate the diagnostic risk of CCHFV diversity, we re-designed our currently fielded CCHFV assay by 193 
incorporating sequencing data from several CCHFV isolates that were previously undetectable with the 194 
original assay. 195 
 196 
Deep sequencing of the CCHFV S segments of these and other CCHFV isolates identified multiple 197 
nucleotide variants within the CCHF-S assay target region. These variants likely led to the decreased 198 
assay performance we observed the CCHFV-S assay. Variant analysis within this assay region did not 199 
identify intra-viral nucleotide differences (data not shown), suggesting some signature stability within 200 
each isolate and supporting continued targeting of this genomic region as a diagnostic signature. Based on 201 
these sequencing data and the CCHFV genomic data deposited into GenBank since the original assay 202 
design, a new assay (CCHF-S2) incorporated degenerate primers and probe taking into account the assay 203 
target sequence diversity. These primers greatly improved CCHFV detection, reflected in lower Cq values 204 
and detection of the three isolates not detected by the CCHF-S assay. 205 
 206 
For highly diverse viruses like CCHFV, it is advantageous to have several diagnostic assays that target 207 
different regions of the viral genome in order to further minimize the diagnostic risk of a false negative 208 
call due to primer/probe mismatches. We conducted a comparison with another commonly used CCHFV 209 
assay developed by Atkinson and colleagues that targets the 5’ untranslated region of the CCHFV S 210 
segment [20]. While both the CCHF-S2 assay and the Atkinson assay positively detected all of the 211 
CCHFV strains tested here, the CCHF-S2 assay had improved sensitivity for most of the tested strains. 212 
Since both of these assays target different regions of the CCHFV genome, both assays could be used for 213 
increased confidence in diagnostic and biosurveillance efforts in order to mitigate the risk of nondetection 214 
due to CCHFV’s diversity. 215 
 216 
In summary, we redesigned a CCHFV real-time RT-PCR assay that was initially developed when limited 217 
sequence information was available and did not perform optimally with newly acquired CCHFV isolates. 218 
This new assay contains degenerate primers and probe that accounts for a significant amount of the 219 
diversity within CCHFV, resulting in dramatically improved isolate detection and assay sensitivity. These 220 
data increase the confidence in the new assay detecting true positives, and this approach can be used to 221 
improve assay sensitivity existing nucleotide-based assays.  222 
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 229 

 230 
 231 
Figure 1. CCHFV isolate sequence analysis. Consensus sequences from eight newly sequenced 232 
CCHFV isolates (reference Genome Announcement) and the Garrison assay primer/probe sequences [25], 233 
indicated with red and green arrows, respectively, were aligned. Nucleotides identical to the primer and 234 
probe sequence are shown as dots, and nucleotide numbers are relative to IbAr10200. Degenerate primers 235 
and probe for the Garrison assay (see Table 1) were designed based off of these aligned sequences.  236 
 237 
 238 

 239 
 240 
Figure 2. CCHFV assay characterization. (A) CCHFV IbAr10200 RNA was serially diluted in two 241 
series, 1:5 and 1:10, and assayed with the CCHFV assays. Shown is a nonlinear fit of the linear range 242 
where all three of the replicates were positive. (B) The preliminary LOD was confirmed by running 60 243 
replicates at the preliminary LOD. The dashed line in each figure indicates the Cq positive/negative cutoff 244 
(40 cycles). 245 
 246 
 247 
 248 
 249 
 250 
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Table 1. CCHFV real-time primers and probe 254 
Assay Primers/pro

 
Sequence (5’-3’) Conc. 

 
Amplicon  Referenc

  CCHF 
 

GGAGTGGTGCAGGGAATTTG 1.25   
CCHF-S CCHF 

 
CAGGGCGGGTTGAAAGC 1.25 57 [25] 

 CCHF-N 6FAM-CAAGGCAAGTACATCAT-
 

0.1   
 CCHF-SF2 GGAVTGGTGVAGGGARTTTG 1.0   
CCHFV-

 
CCHF-SR2 CADGGTGGRTTGAARGC 1.0 57 here 

 CCHF-N2 6FAM-CAARGGCAARTACATMAT-
 

0.2   
 255 
 256 
Table 2. CCHFV assay detection 257 

virus 
detection (average Cq ± STDEV) 
CCHFV-S2 CCHF-S2 Atkinson 

assay 
I-40 20.66 ± 0.380 17.13 ± 0.242 27.62 ± 0.3 
2219 KKK28 25.12 ± 0.04 22.34 ± 0.290 35.01 ± 0.16 
I-248 22.95 ± 0.04 23.56 ± 0.174 31.23 ± 0.27 
JD-206 34.29 ± 0.511 nd 31.69 ± 0.3 
Drosdov 29.00 ± 0.091 nd 39.37 ± 0.64 
HY13 19.66 ± 0.07 17.85 ± 0.11 24.94 ± 0.21 
SPU 97/85 21.69 ± 0.133 34.10 ± 1.308 38.94 ± 0.51 
SPU 134/87 25.48 ± 0.182 30.30 ± 2.081 31.61 ± 0.13 
SPU 115/87 24.28 ± 0.489 34.35 ± 0.474 31.96 ± 0.26 
SPU 415/85 18.97 ± 0.025 32.18 ± 0.219 26.81 ± 0.22 
SPU 41//84 25.68 ± 0.083 32.86 ± 0.321 25.68 ± 0.2 
SPU 128/81 23.16 ± 0.216 37.37 ± 0.525 28.97 ± 0.04 
UG3010 24.20 ± 0.059 24.01 ± 0.050 29.84 ± 0.14 
IbAr10200 24.28 ± 0.201 39.47 ± 0.924 30.55 ± 0.52 
DAK8194 28.89/29.281 nd 33.46 ± 0.54 
12 of 3 replicates were positive 258 
2nd is not detected 259 
 260 
 261 
Table 3. Analytical assay characteristics with IbAr10200 262 
assay linearity 

(R2) 
slope y-intercept LOD, PFU/ml 

(positives/60 replicates) 
Cq ± 
STDEV 

coefficient of 
variance 

CCHF-S 0.845 -2.419 53.41 2.56 x 106 (59/60) 37.77 ± 0.68 1.79% 
CCHFV-S2 0.980 -2.730 43.64 256 (58/60) 37.18 ± 0.91 2.95% 
Atkinson 
assay 

0.987 -3.581 55.4 2.56 x 104 (60/60) 36.75 ± 0.74 2.02% 

  263 
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Supplementary 382 
 383 
Figure S1. CCHFV sequence analysis. CCHFV S segment sequences containing the assay target region 384 
were identified in GenBank and aligned to show the forward and reverse primers (red) and the probe 385 
(green) region of the CCHF-S assay. The dominant nucleotide variants within these sequences, with the 386 
exception of one, are covered in the newly designed primers and probe. The single variant, the G at the 5’ 387 
forward primer end, should have little impact on primer binding and extension. 388 
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CCHFV 10200 Standard Curve with Hewson assay

Run 10200 RNA in triplicate at 8 dilutions sarting at 1:10
with one NTC (H2O)

Reaction Mix
(SuperScript III Platinum One-Step Quantitative RT-PCR System)

# Rxns =
Reagents Stock [Final] 1rxn 28
2X Reaction Mix 2 1 10 280
Nuclease-free water 1.7 47.6
100 µM F. Primer 18 0.9 1 28
100 µM R. Primer 18 0.9 1 28
100 µM Probe 25 0.625 0.5 14
RT/Platinum Taq Mix 0.8 22.4
X pg/µL RNA-pos cntrl/H2O X pg/µL 5

20

Cycling Conditions:
Temp Time Cycles
50C 10 min 1
95C 2 Min 1

95 C 10 sec
60 C 40 sec
40 C 30 sec 1

Results:
Hewson

pfu/PCR rxn
Standard Log Concentration Rep1 Rep2 Rep3 Avg

1.28E+04 32.25 32.21 32.61 32.36
2.56E+03 34.83 34.75 35.2 34.93
1.28E+03 36.33 36.66 35.73 36.24
2.56E+02 38.24 38.5 38.91 38.55
1.28E+02 39.47 39.17 39.86 39.50
2.56E+01 41.06 ND 40.88 40.97
1.28E+01 42.77 42.7 ND 42.74
2.56E+00 ND ND ND

Error: 0.127
Efficiency: 1.994
Slope: -3.337
Yintercept: 46.28

45

CP



CCHFV Standard Curve

Run 10200 RNA in tripilcate at 7 dilutions starting with stock
and one NTC (H2O)

Reaction Mix
# Rxns =

Reagents Stock [Final] 1rxn 27
Mater Mix 14.6 394.2
RT/Platinum Taq Mix 0.4 10.8
X pg/µL RNA-pos cntrl/H2O X pg/µL 5

20

PCR Cycling Conditions
Temp Time Cycles
50C 15 min 1
95C 5 Min 1

94 C 1 sec
55 C 20 sec
68 C 5 sec
40 C 30 sec 1

Results:

Standard Log Concentration Rep1 Rep2 Rep3
1.28E+05 21.04 20.87 21.03 20.98
1.28E+04 23.9 23.97 23.79 23.886667
1.28E+03 27.14 27.69 27.21 27.346667
1.28E+02 30.49 30.37 30.37 30.41
1.28E+01 33.55 33.77 33.71 33.676667
1.28E+00 36.44 36.57 35.74 36.25
1.28E-01 ND ND 37.07
1.28E-02 ND ND ND

21.01 20.91 20.89 20.936667
24.1 23.99 24.2 24.096667

27.31 27.39 27.26 27.32
30.17 30.24 30.22 30.21
33.66 33.62 33.74 33.673333
35.74 35.84 35.79

45

CP



x y X Y
1.28E+05 20.98 1.28E+05 21.04
1.28E+04 23.88667 1.28E+05 20.87
1.28E+03 27.34667 1.28E+05 21.03
1.28E+02 30.41 1.28E+04 23.9
1.28E+01 33.67667 1.28E+04 23.97
1.28E+00 36.25 1.28E+04 23.79

1.28E+03 27.14
1.28E+03 27.69

R2 1.28E+03 27.21
0.503227 1.28E+02 30.49

1.28E+02 30.37
1.28E+02 30.37
1.28E+01 33.55
1.28E+01 33.77
1.28E+01 33.71
1.28E+00 36.44
1.28E+00 36.57
1.28E+00 35.74



R2

0.502586



Error: 0.023
Efficiency: 2.06
Slope: -3.187
Yintercept: 36.95

1.28E+05 20.93667
1.28E+04 24.09667
1.28E+03 27.32
1.28E+02 30.21
1.28E+01 33.67333
1.28E+00 35.79

0.520809
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